Course Syllabus

Syllabus:

- Lesson One: What is Network Science?
 - What is (not) network science?
 - The main premise of network science
 - History and relation to graph theory, physics, sociology, and other disciplines
 - Examples of networks from different application domains
- Lesson Two: Relevant Concepts From Graph Theory
 - Undirected, directed, signed, weighted and spatial networks
 - Paths, connected components, random walks, etc
 - Directed Acyclic Graphs
 - Bipartite graphs
 - Max-flow/min-cut
- Lesson Three: Degree Distribution and ER Graphs
 - Degree distribution
 - Friendship paradox
 - ER graphs and their degree distribution
 - Giant component size in ER graphs
 - Assortative vs disassortative networks
- Lesson Four: Random vs. Real Graphs and "Scale Free" Networks
 - The degree distribution of real-world networks
 - Power-law degree distributions
 - Preferential attachment model
 - How to detect a power-law and estimate the exponent
 - Configuration model and degree-preserving randomization
- Lesson Five: Network Paths, Clustering and The "Small World" Property
 - Clustering and transitivity in networks
 - Diameter and characteristic path length
 - Small-world networks and the Watts-Strogatz model
 - Network motifs
- Lesson Six: Centrality and Netork-core Metrics and Algorithms
 - Link-based centrality metrics
 - Path-based centrality metrics
 - k-core decomposition
 - Core-periphery structure
 - Rich-club set of nodes

- Lesson Seven: Community Detection and Hierarchical Modularity
 - Hierarchical clustering in networks
 - Modularity metric
 - Algorithms for modularity maximization
 - Limitations of modularity
 - Hiearchical modularity
- Lesson Eight: Advanced Topics in Community Detection
 - Overlapping communities
 - Dynamic communities
 - Comparing community structures
 - The role of nodes within and between communities
 - Applications of community detection
- Lesson Nine: Network Contagion and Epidemics
 - Epidemics on networks
 - Epidemic modeling (SI, SIS, SIR, etc) under homogeneous mixing
 - Epidemic modeling under arbitrary degree distributions
 - Basic reproductive number and superspreaders
- Lesson Ten: Influence Phenomena On Networks
 - The linear threshold model and the Independent cascades model
 - Empirical studies in information and behavior spreading
 - Seeding strategies on how to maximize influence
 - Cascades and community structure
- Lesson Eleven: Other Dynamic Processes Of/On Networks
 - Percolation, random failures, and targeted attacks on networks
 - Search on networks
 - Synchronization on networks
 - Coevolutionary networks
- Lesson Twelve: Models of Static and Dynamic Networks
 - Stochastic network models that generate power-law degree distributions
 - Optimization-based network models
 - Stochastic block models
 - Hierarchical Random Graphs
- Lesson Thirteen: Statistical Analysis of Network Data
 - Network sampling methods
 - Estimation of network metrics
 - Association networks
 - Network tomography
- Lesson Fourteen: Machine Learning meets Network Science

- Node embeddings
 Graph neural networks
 Deep generative network models
 Limitations and applications of graph neural networks